Name and Block:

The proposed mechanisms of some chemical reactions involve an elementary step that is reversible. Now that we have a general understanding of reversible reactions and equilibrium can write rate laws for these types of chemical reactions.

1. Let's consider the formation of NO_2 from NO and O_2 :

$$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \to 2 \operatorname{NO}_2(g) \tag{1}$$

The experimentally determined rate law for this reaction is second order in NO and first order in O_2 .

$$Rate = k[NO]^2[O_2] \tag{2}$$

One proposed mechanism has two elementary steps:

Step 1: NO (g) + O₂ (g)
$$\rightleftharpoons$$
 NO₃ (g) (fast)
Step 2: NO₃ (g) + NO (g) \rightarrow 2 NO₂ (g) (slow)

Write a rate law that is consistent with this mechanism.