Thermochemical Equations

SCC283

1. Heat of Combustion for Propane:

The combustion of propane, C_3H_8 , is represented by the following thermochemical equation:

 $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$ $\Delta H = -2219 \text{ kJ}$

- (a) How much heat is released when 2.50 moles of propane are combusted?
- (b) What is the heat released when 100.0 g of propane are burned?

2. Heat of Combustion for Methane:

The combustion of methane, CH_4 , is represented by the following thermochemical equation:

$$\operatorname{CH}_4(g) + 2\operatorname{O}_2(g) \to \operatorname{CO}_2(g) + 2\operatorname{H}_2\operatorname{O}(l) \quad \Delta H = -890.3 \,\mathrm{kJ}$$

(a) How much heat is released when 3.00 moles of methane are combusted?

(b) What is the heat released when 48.0 g of methane are burned?

3. Heat of Combustion for Ethanol:

The combustion of ethanol, C_2H_5OH , is represented by the following thermochemical equation:

$$C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$$
 $\Delta H = -1367 \text{ kJ}$

- (a) How much heat is released when 0.750 moles of ethanol are combusted?
- (b) What is the heat released when 46.0 g of ethanol are burned?

4. Heat of Combustion for Hydrogen:

The combustion of hydrogen, H₂, is represented by the following thermochemical equation:

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l) \quad \Delta H = -571.6 \text{ kJ}$$

(a) How much heat is released when 5.00 moles of hydrogen are combusted?

(b) What is the heat released when 10.0 g of hydrogen are burned?

5. Heat of Combustion for Octane:

The combustion of octane, C_8H_{18} , is represented by the following thermochemical equation:

 $2C_8H_{18}(l) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(l)$ $\Delta H = -10900 \text{ kJ}$

- (a) How much heat is released when 0.400 moles of octane are combusted?
- (b) What is the heat released when 114 g of octane are burned?